
— V11B-01 —
Trapdoor faulting at Kita-Ioto Caldera, Japan:

Quantification of magma overpressure beneath a submarine caldera
Osamu SANDANBATA1,2, and Tatsuhiko SAITO1

(1) National Research Institute for Earth Science and Disaster Resilience (NIED), Japan, (2) JSPS Research Fellow (PD), Japan

Five-min. Summary
is available on YouTube
CLICK HERE ▶

Discussion

Fig. 1: A vertical-CLVD earthquake near Kita-Ioto caldera, a
submarine caldera with a size of 12 km x 8 km near Kita-Ioto
Island, in the Izu-Bonin arc. Each dot represents locations of
repeating vertical-CLVD earthquakes. The 2008 event is plotted
with its focal mechanism reported in the GCMT catalog.
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Study target: Kata-Ioto caldera, south of Japan
• Kita-Ioto caldera has been known to be active, but recent

volcanic activity is unknown.
• Mw 5.2–5.3 non-double-couple earthquakes, often called

vertical-CLVD earthquakes, occurred every several years.
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Fig. 2: Tsunami signal from the 2008 Kita-Ioto caldera earthquake,
recorded by an ocean-bottom-pressure gauge of the DART 52404
station (orange triangle in Figure 1a).

Milli-meter tsunami due to the 2008 earthquake
• Following an Mw 5.3 event in 2008, a tsunami signal was

recorded by an ocean-bottom-pressure gauge.
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Fig. 3: Trapdoor faulting in Sumisu submarine 
caldera (Sandanbata et al., 2022).

1. Introduction
A volcanic earthquake at Kita-Ioto caldera 

generated a tsunami wave. By using the tsunami 
data, we here attempt to estimate the magma 
overpressure that caused the volcanic tsunami.

3. Results: Source model of the 2008 Kita-Ioto caldera earthquake
By comparing a mechanical-model-predicted tsunami waveform with the tsunami data, 
we determine the TF motions/size and the magma overpressure that caused the TF.

Model setting
• Stress/dislocation interactions between

(1) a ring fault (RF) and (2) a horizontal
crack (HC) filled with magma are solved
in a 3-D half-space elastic medium by
the boundary element method (BEM).

Water
depth (m)

Reverse slip 
of a ring fault

Vertical opening or closure
of a magma-filled horizontal crack

Fig. 4. Source structure of a mechanical model.

Hypothesis: “Trapdoor faulting (TF)”
• Recently found at Sumisu caldera.

1) Mw~5 vertical-CVLD earthquakes
2) Efficient tsunami generation
3) Recurrence at a caldera

What equations to solve?
Assumptions: 
I. TF is caused by magma overpressure (p0)
II. TF occurs with (1) reverse slip of RF, s, 

(2) opening and closure of HC, δ, 
and (3) magma pressure change, Δp.

2. Methods: Mechanical model of trapdoor faulting
Hypothesizing the trapdoor faulting mechanism for the earthquake, 
we newly develop a mechanical model of trapdoor faulting to relate

the magma overpressure as a driving force to the resultant tsunami.

Boundary conditions (BCs): Pre-assuming p0 , BEM determines RF/HC motions (s , δ) and magma pressure change (Δp) during TF.
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BC I. On RF, shear stress reduces to zero. BC II. On HC, normal stress = magma pressure.
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Fig. 5: SE–NW profile of displacement fields in the caldera (left) before and (right) after TF. 
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Input parameters
  Crack depth = 2.0 (km)
  V0βm = 1.50 (m3/Pa)
  Ring-fault dip angle = 83°
  Elastic moduli λ,μ = 5.0 (GPa)
Output parameters
  pcrit = 11.79 (MPa)
  Δp = –1.97 (MPa)
  ΔV = 0.0030 (km3)
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Fig. 6. Mechanical source model of the 2008 Kita-Ioto
caldera earthquake constrained by the tsunami data.

Reverse slip of RF of max. ~ 9 m 

Vertical opening/closure of HC

Input parameters
  Crack depth = 2.0 (km)
  V0βm = 1.50 (m3/Pa)
  Ring-fault dip angle = 83°
  Elastic moduli λ,μ = 5.0 (GPa)
Output parameters
  pcrit = 11.79 (MPa)
  Δp = –1.97 (MPa)
  ΔV = 0.0030 (km3)
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Fig. 7. Tsunami of the model and data: (top)
waveforms, and (middle & bottom) spectrograms.

1) TF with RF slip of ~9 m explains the tsunami data, as well as seismic data (not shown here).
2) Magma overpressure of p0~12 MPa is required to cause the TF.
3) Magma pressure drop is Δp0~2 MPa, only ~16 % of the overpressure before TF.

4. Discussion and Conclusions
• Our results suggest that the 2008 earthquake at Kita-Ioto

caldera was caused by a trapdoor faulting under water.
• The estimated magma overpressure of >10 MPa shows

that magma beneath the caldera was highly pressurized;
this overpressure value is comparable to those estimated at
Axial Seamount and Sierra Negra when the eruptions
initiated (Cabaniss et al., 2020; Gregg et al., 2022).

• A trapdoor faulting reduces the magma overpressure by
only 10–20%, suggesting that the potential for volcanic
unrest remains high even after a trapdoor faulting.

• Although the estimated values vary depending on assumed
source geometries, fault friction laws, and/or magma
properties, trapdoor faulting data can be utilized to
investigate the physical status of a submarine volcano.

P, Q, R, S:

ΔV: 
V0: 
βm: 
A: 

Interaction matrices that map dislocations of 
RF/HC into normal/shear stresses on RF/HC, 
computed by the triangular dislocation method 
(Nikkhoo & Walter, 2015).

HC volume change during TF
Initial crack volume
Magma compressibility
Area of each HC mesh

(here V0βm = 1.50 m3/Pa)
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